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Phase diversity is a powerful methodology technique for measuring the wavefront aberrations of optical systems and 

surfaces by solving an unconstrained optimization problem from multiple images whose pupil phases differ from one 

another by a known amount. However, it often fails for large wavefront aberrations. A modified phase diversity 

technique to improve the sensing dynamic range was proposed. We conducted computer simulations of the 

reconstruction of large aberrations of an optical system with the proposed phase diversity method.  We fitted the 

wavefront to Zernike polynomials to reduce the number of variables. The limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used for optimizing process. The study shows that the 

method can extend the dynamic range from about 2λ to about 11λ and the paper gives practical guidelines for the 

application of phase diversity methods to characterize large wavefront aberrations. 
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1. Introduction 

Phase aberrations arise from a variety of sources including atmospheric turbulence， misalignments among optical 

elements，improper mirror figure and off-axis design residual
[1]． As a result，wavefront sensor is required to measure the 

aberrated wavefront and provide appropriate error signals to the actuator system to remove aberrations. Phase diversity，

as a candidate wavefront sensing technique，first proposed by Gonsalves
[2]，could detect phase aberrations from several 

images directly．This technique has already been used to check the alignment of optical systems and deconvolve 

aberrated images for about 35 years
[3,4]．It offers certain advantages over other wavefront sensors: the optical hardware 

required is simple to implement and it works well with extended objects
 [5]

. 

However，large aberrations with phase Peek Valley(PV)values higher than 2  might be encountered．In such a case，

the data used in phase diversity do not contain the full information of the aberrated pupil phase．So，there are many 

equivalent solutions corresponding to both local optimums and the global one in the optimizing process． 

In this paper, we used a modified phase diversity technique to extend the dynamic range of phase diversity. We 

conducted computer simulations of the reconstruction of large aberrations of an optical system with the phase diversity 

method. This paper explained how to extend the detecting range of phase diversity and discussed the results.  

2. ESTIMATION OF ABERRATIONS BY PHASE DIVERSITY 

2.1 Principle of phase diversity 

Figure 1 illustrates the phase diversity principle
 [6,7]

. The idea of phase diversity is to collect at least two images that 

differ from each other by a known phase variation. The first is often the conventional focal-plane image that is degraded 
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by the unknown aberrations. Additional images of the same object are formed by perturbing these unknown aberrations 

in some known fashion. For example, a simple beam splitter and a second detector array that is translated along the 

optical axis, as depicted in Fig.1, constitutes a second imaging channel that produces a diversity image subject to the 

same unknown aberrations found in the conventional image, but is additionally impacted by a known amount of defocus. 

defocused image

focused image

defocus distance

imaging system



beam splitter

 

Fig. 1 Principle of phase diversity 

The PD technique has been successfully used by some authors to determine aberrations
 [8,9,10]

and also to restore 

images
[11,12]

. It uses a low-cost, optically simple wave-front sensor that consists of the imaging camera system, but 

requires a complex numerical and iterative processing to restore the unknown aberrations from the images. 

2.2 Imaging model 

In Fig.1, the input-output relationship for the optical system is described by the following equation: 

( ) ( )* ( ) ( )k k kd x o x h x n x   .                                 (1) 

Where k indicates the different optical channels, ( )o x indicates the object, * indicates the convolution product, ( )kn x

denotes an additive noise and ( )kh x is the point spread function (PSF) in optical channel k , which can be computed by: 

 
2

1( ) F ( )k kh x P u  .                                     (2) 

Where  1F
indicates inverse Fourier transform, u is a two-dimensional vector in the pupil plane, and kP is the 

generalized pupil function of channel k : 

 ( ) ( ) exp [ ( ) ( )]k k kP u P u i u u   .                                (3) 

Where ( )u is the unknown wave-front aberration that we would like to estimate. The phase function is expanded on a 

set of polynomials. Indeed, aberrations in an optical system can be mathematically represented by Zernike polynomials
 

[13]
. 

4

( ) ( )i i

i

u a Z u


  .                                      (4) 

Where ( )k u is the known phase function introduced in the k -th optical channel. In our case, 4 4( ) ( )d

k u a Z u    

where 4Z  is the defocus Zernike polynomial. The choice of the known defocus distance is essential to obtain accurate 
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results. The RMS defocus coefficient 4

da depends on the defocus distance d of the defocus channel, the telescope diameter

D and the focal length F through: 

4 2
( )

8 3 ( / )

d d
a in radian

F D




                                   (5) 

The corresponding peak-to-valley optical path   is equal to 

4

2

3

8( / )

da d

F D




                                         (6) 

2.3 Aberration estimation principle 

If an additive Gaussian noise model is adopted, the object ( )o x  and the wave-front aberration function ( )u can be 

computed by minimizing the cost function: 

                     
2

( ) ( )* ( )k k

k x

E d x o x h x    .                                (7) 

Using Parseval’s theorem and the convolution theorem E  can be expressed in the frequency domain: 

                    
2

( ) ( ) ( )k k

k f

E D f O f H f    .                                (8) 

Where ( )D f , ( )O f , ( )H f are the Fourier transforms of ( )d x , ( )o x , ( )h x respectively. 

Since several features make the inverse problem very difficult to solve, the problem is ill posed. Hence, we add 

regularization terms to obtain the modified cost function: 

2 2
( ) ( ) ( ) ( )M k k

k f f

E D f O f H f O f      .                          (9) 

Setting /ME O   to zero, we obtain the solution of ( )O f : 

*

2
( )

k k

k

k

k

D H

O f
H 







 .                                       (10) 

Substituting equation (10) back into equation (9), we obtain the cost function: 

2

*

2

2

k k

k

M k

k f f i

k

D H

E D
H 

 



 


 .                                 (11) 

Then the unknown wave-front aberration can be estimated by minimizing the cost function with the help of optimization 

methods. An analytic expression for the derivative of the cost function with respect to the aberration parameters is given 

by: 
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2
1

4
( )Im[ ( )(T )( )]M i k k k

u ki

E Z u H u H u
a N



 


   


   .                           (12) 

Where            

2

2

2 2

[ ( ) ]

T ( )
( )

l j j k j j k

l j j

k

l

l

H D H D D H H

u
H 

   




  


  .                       (13) 

Note: the size of object ( )o x  is N N and the operator  Im  takes the imaginary part of the argument. 

The cost function in Eq. (13) is minimized with respect to a set of unknown phase parameters by a nonlinear 

optimization routine such as steepest descent, conjugate gradient, Newton or quasi-Newton, simulated annealing, or even 

genetic algorithms. Limited memory quasi-Newton methods are useful for solving large-scale optimization problems. 

L-BFGS algorithm is very well suited to PD, due to its efficiency and good performance in solving large-scale 

optimization problems.  

2.4 Defocus distance effect 

The corresponding defocus distance depends on the focal ratio of the optical system. When the defocus distance 

decreases, the difference between the focal image and the defocus image is no longer sufficient to allow for a good 

convergence of the phase diversity algorithm. The old view that when the defocus distance is too large, the contrast in the 

out of focus image is attenuated and this image was no longer usable so that the defocus distance around the value 

(typicallyλ ± λ/2) would provide accurate results which was shown in the former study
 [14]

. However, we did some 

research on the effect of defocus distance and obtained some new interesting results. 

3. SIMULATION RESULTS 

In this section, we show simulation results of measuring the simulated aberrations based on the phase-diversity method. 

We generated a complex pupil function using a uniformly illuminated circular pupil of diameter 28 mm paired with a 

varying phase function shown in Fig.2. The phase function contains mostly spherical aberration and some small 

asymmetric aberrations. The RMS and PV of the aberrated phase is 1.807 𝜆 and 10.961 𝜆 respectively. The pupil 

function was applied to an f/25 lens with a focal length of 700 mm. 

The conditions for the simulations are given by a point object, an imaging wave-length of 632.8 nm and a pure defocus 

(has different PV value) between the two images. The computational domain is taken to be a 1024×1024 pixels array and 

then the two intensity images were computed. The simulated pixel pitch of the camera is 6.45 um. The input images are 

Nyquist sampled
 [15]

 in this simulation condition. No noise is considered here. Then we can apply PD algorithm. Piston, 

tip or tilt terms are not included in the reconstructed results since they cannot be estimated by phase diversity. 
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Fig.2. Phase function (in radians) used to generate intensity images  

3.1 Results of experiment 1 

In experiment 1, the RMS of the induced defocus aberration is 5 radians. Fig.3 and Fig.4 show a comparison between the 

input focus and defocus images and the reconstructed focus and defocus images aberrated by the estimated phase. Fig. 5 

quantifies the convergence performance of the PD algorithm. The input and reconstructed phase results are shown in 

Fig.6. Fig. 6 (c) shows that the residual wavefront RMS is 2.2 λ which means the input aberration cannot be 

reconstructed successfully in this simulation experiment. 

   

Fig.3. Comparison between measured focus image (a) and reconstructed focus image (b) 
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Fig.4. Comparison between measured defocus image (a) and reconstructed defocus image (b) 

Fig.5. Cost function versus number of iterations 

Fig.6. The input aberration (a), the reconstructed aberration (b) and the residual reconstructed aberration (c) (Phases are shown in 

radians) 
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In experiment 2, the RMS of the induced defocus aberration is 20 radians. Fig.7 shows a comparison between the input 

defocus image and the reconstructed defocus images. Fig. 8 quantifies the convergence performance of the PD algorithm. 

The comparison between the induced aberration and the reconstructed results are shown in Fig.9. Fig. 9 (c) shows the 

residual wavefront RMS is 3.51× 10-6
 λ that means the aberration is reconstructed successfully in this simulation 

experiment. Fig. 10 quantifies the performance of wave-front estimation by comparing the input and estimated Zernike 

coefficients. These results show that the PD algorithm performs well when the defocus aberration is 20 radians which is 

greater than the induced defocus aberration in the first experiment. 

Fig.7 Comparison between measured defocus image (left) and reconstructed defocus image (right) 

Fig.8. Cost function versus number of iterations 
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3.2 Results of experiment 2 
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Fig. 9 The input aberration (a), the reconstructed aberration (b) and the residual reconstructed aberration (c) (Phases are shown in 

radians) 

 

 

Fig. 10 Comparison between true and estimated Zernike coefficients 

 

3.3 Results of experiment 3 

In experiment 3, we increased the RMS value of the induced defocus aberration to 30 radians. Fig. 11 (c) shows the 

residual wavefront RMS is 2.4× 10-6λ. Fig. 12 shows the algorithm begins to converge after 180 iterations. However, Fig. 

8 shows that the algorithm begins to converge after 400 iterations in experiment 2. By comparing the algorithm 

convergence in experiment 1，2 and 3, the known amount of defocus really impacts the convergence rate and the phase 

reconstruction precision. The larger the defocus, the greater difference between the focus and defocus images, the better 

reconstruction results could be obtained. On the other hand, the larger the defocus, the larger size of the defocus image, 

and we need more memory to save images and more time to do the Fourier transformation calculation in the optimizing 

process. All things considered, we should select an appropriate value of the defocus distance. 
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Fig. 11 The input aberration (a), the reconstructed aberration (b) and the residual reconstructed aberration (c) (The units are in radians) 

 

 

Fig. 12 Cost function versus number of iterations 

4 CONCLUSIONS 

We have given a precise description of the phase diversity algorithm and its usage for the estimation of aberrations. 

Several simulated examples with different amount of induced defocus have been proposed in order to investigate its 

effect on the dynamic range of the phase diversity algorithm. This study highlights a certain amount of defocus 

aberration needed to be generated to obtain accurate results and shows that the phase diversity algorithm can have large 

dynamic range up to about 11λ. In the near future, we will do the relative experiments for further validation. General, for 

future high performance optical detection, this method may be of interest to achieve the challenging science goals of the 

optical community. 
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